Skip to content

Performance Reference

Comprehensive guide to optimizing MCP Standards Server performance.

Performance Overview

The MCP Standards Server is designed for high performance with: - Sub-100ms response times for standard operations - Horizontal scalability - Efficient resource utilization - Intelligent caching strategies

Performance Metrics

Key Metrics

Metric Target Description
Response Time (p50) <50ms Median response time
Response Time (p95) <100ms 95th percentile
Response Time (p99) <200ms 99th percentile
Throughput >1000 req/s Requests per second
CPU Usage <70% Average CPU utilization
Memory Usage <512MB Process memory
Cache Hit Rate >90% L1+L2 cache hits

Monitoring

from src.core.performance.metrics import PerformanceMonitor

monitor = PerformanceMonitor()

# Track operation
with monitor.track("validation"):
    result = validate_code(code)

# Get metrics
metrics = monitor.get_metrics()
print(f"Average time: {metrics.avg_time}ms")
print(f"Operations/sec: {metrics.throughput}")

Optimization Strategies

1. Caching Optimization

# Aggressive caching configuration
cache:
  l1:
    max_size: 50000
    ttl: 600
    preload: true

  l2:
    pipeline_size: 100
    compression: true

  warming:
    parallel: true
    batch_size: 1000

2. Database Optimization

# Use connection pooling
from sqlalchemy import create_engine

engine = create_engine(
    "postgresql://localhost/mcp",
    pool_size=20,
    max_overflow=40,
    pool_pre_ping=True,
    pool_recycle=3600
)

# Batch operations
def bulk_insert_standards(standards):
    with engine.begin() as conn:
        conn.execute(
            insert(StandardsTable),
            standards
        )

3. Async Operations

import asyncio
from concurrent.futures import ThreadPoolExecutor

class AsyncValidator:
    def __init__(self):
        self.executor = ThreadPoolExecutor(max_workers=10)

    async def validate_files(self, files):
        """Validate files concurrently."""
        tasks = [
            self.validate_file(file)
            for file in files
        ]
        return await asyncio.gather(*tasks)

    async def validate_file(self, file):
        """Validate single file asynchronously."""
        loop = asyncio.get_event_loop()
        return await loop.run_in_executor(
            self.executor,
            self._validate_sync,
            file
        )

Code Optimization

1. Efficient Pattern Matching

# Bad - Multiple regex compilations
def check_patterns(code):
    if re.search(r'TODO', code):
        violations.append('todo')
    if re.search(r'FIXME', code):
        violations.append('fixme')

# Good - Compile once, reuse
class PatternChecker:
    def __init__(self):
        self.patterns = {
            'todo': re.compile(r'TODO'),
            'fixme': re.compile(r'FIXME')
        }

    def check_patterns(self, code):
        return [
            name for name, pattern in self.patterns.items()
            if pattern.search(code)
        ]

2. Memory-Efficient Processing

# Bad - Load entire file
def process_large_file(path):
    content = open(path).read()
    return process(content)

# Good - Stream processing
def process_large_file(path):
    results = []
    with open(path) as f:
        for chunk in iter(lambda: f.read(4096), ''):
            results.extend(process_chunk(chunk))
    return results

3. Lazy Loading

class StandardsRepository:
    def __init__(self):
        self._standards = None
        self._index = None

    @property
    def standards(self):
        """Lazy load standards."""
        if self._standards is None:
            self._standards = self._load_standards()
        return self._standards

    @property
    def search_index(self):
        """Lazy load search index."""
        if self._index is None:
            self._index = self._build_index()
        return self._index

Profiling

CPU Profiling

import cProfile
import pstats

def profile_operation():
    profiler = cProfile.Profile()
    profiler.enable()

    # Operation to profile
    validate_directory("src/")

    profiler.disable()

    # Analysis
    stats = pstats.Stats(profiler)
    stats.sort_stats('cumulative')
    stats.print_stats(20)  # Top 20 functions

Memory Profiling

from memory_profiler import profile

@profile
def memory_intensive_operation():
    # Track memory usage line by line
    large_data = load_standards()  # +50MB
    processed = process_data(large_data)  # +30MB
    return compress(processed)  # -60MB

Line Profiling

from line_profiler import LineProfiler

def profile_critical_path():
    lp = LineProfiler()
    lp.add_function(critical_function)

    # Run with profiling
    lp.enable()
    result = critical_function()
    lp.disable()

    # Show results
    lp.print_stats()

Benchmarking

Micro-benchmarks

import timeit

# Compare implementations
def benchmark_implementations():
    implementations = {
        'regex': lambda: regex_validate(code),
        'ast': lambda: ast_validate(code),
        'hybrid': lambda: hybrid_validate(code)
    }

    for name, func in implementations.items():
        time = timeit.timeit(func, number=1000)
        print(f"{name}: {time:.4f}s")

Load Testing

# locustfile.py for load testing
from locust import HttpUser, task, between

class MCPUser(HttpUser):
    wait_time = between(1, 3)

    @task(3)
    def validate_code(self):
        self.client.post("/api/validate", json={
            "code": "def test(): pass",
            "standard": "python-best-practices"
        })

    @task(1)
    def get_standards(self):
        self.client.get("/api/standards")

Configuration Tuning

High-Performance Configuration

performance:
  # Worker configuration
  workers: ${CPU_COUNT}
  threads_per_worker: 4

  # Request handling
  request_timeout: 30
  keepalive_timeout: 5

  # Resource limits
  max_request_size: 10485760  # 10MB
  max_memory_per_request: 104857600  # 100MB

  # Optimization flags
  enable_jit: true
  enable_async: true
  enable_caching: true

  # Garbage collection
  gc:
    threshold0: 700
    threshold1: 10
    threshold2: 10

Database Performance

database:
  # Connection pool
  pool_size: 20
  max_overflow: 40
  pool_timeout: 30
  pool_recycle: 3600

  # Query optimization
  echo: false
  statement_timeout: 5000

  # Indexes
  auto_create_indexes: true
  index_cache_size: 100000

Scaling Strategies

Horizontal Scaling

# docker-compose.yml
version: '3.8'

services:
  mcp-server:
    image: mcp-standards-server
    deploy:
      replicas: 4
      resources:
        limits:
          cpus: '2'
          memory: 1G
    environment:
      - REDIS_URL=redis://redis:6379
      - DATABASE_URL=postgresql://db:5432/mcp

  nginx:
    image: nginx
    ports:
      - "80:80"
    volumes:
      - ./nginx.conf:/etc/nginx/nginx.conf
    depends_on:
      - mcp-server

Vertical Scaling

# Optimize for multi-core
import multiprocessing

def parallel_validation(files):
    cpu_count = multiprocessing.cpu_count()

    with multiprocessing.Pool(cpu_count) as pool:
        results = pool.map(validate_file, files)

    return results

Performance Best Practices

1. Minimize I/O

# Bad - Multiple file reads
for standard_id in standard_ids:
    with open(f"standards/{standard_id}.yaml") as f:
        standards.append(yaml.load(f))

# Good - Batch read
all_standards = load_all_standards()  # Single I/O
standards = [all_standards[sid] for sid in standard_ids]

2. Use Appropriate Data Structures

# Bad - O(n) lookup
violations = []
for rule in rules:
    if rule.id in violations:
        continue

# Good - O(1) lookup
violations = set()
for rule in rules:
    if rule.id in violations:
        continue

3. Avoid Premature Optimization

# Profile first
with profile_context():
    result = operation()

# Then optimize hot paths only
if is_hot_path:
    result = optimized_operation()
else:
    result = simple_operation()

Troubleshooting Performance

Common Issues

  1. Slow Response Times
  2. Check cache hit rates
  3. Profile database queries
  4. Review async operation usage

  5. High Memory Usage

  6. Implement pagination
  7. Use generators for large datasets
  8. Check for memory leaks

  9. CPU Bottlenecks

  10. Parallelize CPU-intensive tasks
  11. Optimize regex patterns
  12. Consider caching computed results

Performance Debugging

import logging
import time

logging.basicConfig(level=logging.DEBUG)

class PerformanceDebugger:
    def __init__(self):
        self.timings = {}

    def track(self, operation):
        start = time.time()
        yield
        duration = time.time() - start

        self.timings[operation] = duration

        if duration > 0.1:  # Log slow operations
            logging.warning(
                f"Slow operation: {operation} took {duration:.3f}s"
            )