Architecture Overview¶
Comprehensive overview of MCP Standards Server architecture and design principles.
System Architecture¶
┌─────────────────────────────────────────────────────────────────┐
│ Client Layer │
├─────────────────┬─────────────────┬─────────────────────────────┤
│ IDE Plugins │ CLI Tools │ CI/CD Integrations │
│ (VS Code, │ (mcp-std) │ (GitHub Actions, │
│ JetBrains) │ │ GitLab CI, Jenkins) │
└─────────────────┴─────────────────┴─────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ MCP Protocol Layer │
├─────────────────────────────────────────────────────────────────┤
│ • Tool Registration • Message Routing │
│ • Schema Validation • Error Handling │
│ • Authentication • Request/Response Management │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ API Gateway │
├─────────────────────────────────────────────────────────────────┤
│ • Rate Limiting • CORS Handling │
│ • Request Validation • Response Formatting │
│ • Metrics Collection • Health Checks │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Business Logic Layer │
├─────────────┬─────────────────┬─────────────────┬─────────────────┤
│ Standards │ Validation │ Rule Engine │ Analytics │
│ Engine │ Engine │ │ Engine │
│ │ │ │ │
│ • Discovery │ • Multi-lang │ • Condition │ • Usage Stats │
│ • Selection │ Analysis │ Evaluation │ • Performance │
│ • Metadata │ • Auto-fix │ • Priority │ • Reporting │
│ • Caching │ • Reporting │ Resolution │ • Trends │
└─────────────┴─────────────────┴─────────────────┴─────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ Storage Layer │
├─────────────┬─────────────────┬─────────────────┬─────────────────┤
│ Standards │ Cache Layer │ Config Store │ Analytics DB │
│ Repository │ │ │ │
│ │ • Redis (L1) │ • YAML Files │ • SQLite │
│ • Git Repo │ • File (L2) │ • Env Vars │ • Metrics │
│ • Local Dir │ • Memory (Hot) │ • Validation │ • Audit Logs │
│ • Sync Mgmt │ • Compression │ • Defaults │ • Performance │
└─────────────┴─────────────────┴─────────────────┴─────────────────┘
Core Components¶
1. MCP Server Core¶
The central component implementing the Model Context Protocol specification.
Key responsibilities: - Protocol message handling - Tool registration and discovery - Client connection management - Authentication and authorization - Error handling and recovery
Implementation files:
- src/mcp_server.py
- Main server implementation
- src/core/mcp/
- MCP protocol handlers
- src/core/mcp/tools/
- MCP tool implementations
2. Standards Engine¶
Manages standards repository, discovery, and selection logic.
Key features: - Standards Discovery: Automatic detection of applicable standards - Metadata Management: Standards metadata and relationships - Rule-based Selection: Intelligent standard selection using rules - Semantic Search: Content-based standard discovery - Caching: Multi-tier caching for performance
Implementation files:
- src/core/standards/engine.py
- Main engine
- src/core/standards/rule_engine.py
- Rule evaluation
- src/core/standards/semantic_search.py
- Semantic search
- src/core/standards/sync.py
- Repository synchronization
3. Validation Engine¶
Multi-language code analysis and validation system.
Supported languages: - Python (AST analysis, PEP compliance) - JavaScript/TypeScript (ESLint integration, patterns) - Go (go vet, golint integration) - Java (PMD, SpotBugs integration) - Rust (clippy integration)
Key features: - Multi-language Analysis: Language-specific analyzers - Auto-fix Capabilities: Automatic issue resolution - Incremental Validation: Only validate changed code - Parallel Processing: Concurrent file analysis - Custom Rules: User-defined validation rules
Implementation files:
- src/analyzers/
- Language-specific analyzers
- src/core/validation/
- Validation engine core
4. Cache Layer¶
Multi-tier caching system for optimal performance.
Cache Architecture:
L0: Memory Cache (Hot Data)
├── Recently accessed standards
├── Parsed rule trees
└── Active validation results
L1: Redis Cache (Warm Data)
├── Standards metadata
├── Search indexes
└── User sessions
L2: File Cache (Cold Data)
├── Full standards content
├── Compiled rules
└── Historical analytics
Features: - Smart Eviction: LRU with priority weighting - Compression: Gzip compression for large data - TTL Management: Configurable time-to-live - Cache Warming: Pre-populate frequently used data
5. Rule Engine¶
Condition-based standards selection and validation rules.
Rule Types: - Project Type Rules: Web app, API, CLI, library - Language Rules: Python, JavaScript, Go, etc. - Framework Rules: React, Django, Express, etc. - Requirement Rules: Security, accessibility, performance - Context Rules: File type, directory structure
Rule Evaluation:
# Example rule structure
rule = {
"id": "react-typescript-web-app",
"conditions": {
"project_type": ["web_application"],
"framework": ["react"],
"language": ["typescript"]
},
"standards": ["react-patterns", "typescript-strict"],
"priority": 10
}
Data Flow¶
1. Standards Synchronization¶
1. Timer/Manual Trigger
↓
2. Git Repository Check
↓
3. Download New/Changed Standards
↓
4. Parse and Validate
↓
5. Update Cache
↓
6. Notify Clients
2. Standard Selection¶
1. Client Request (project context)
↓
2. Rule Engine Evaluation
↓
3. Semantic Search (if needed)
↓
4. Priority Resolution
↓
5. Cache Result
↓
6. Return Applicable Standards
3. Code Validation¶
1. Validation Request
↓
2. Language Detection
↓
3. Standard Selection
↓
4. File Analysis (Parallel)
↓
5. Rule Application
↓
6. Auto-fix (if enabled)
↓
7. Result Aggregation
↓
8. Report Generation
Design Principles¶
1. Modularity¶
- Loose Coupling: Components communicate through well-defined interfaces
- Plugin Architecture: Extensible analyzer and validator system
- Configuration-Driven: Behavior controlled through configuration
- Language Agnostic: Core engine independent of specific languages
2. Performance¶
- Lazy Loading: Load standards and rules on-demand
- Caching Strategy: Multi-tier caching with intelligent eviction
- Parallel Processing: Concurrent validation and analysis
- Resource Management: Memory and CPU usage optimization
3. Scalability¶
- Horizontal Scaling: Multiple server instances with shared cache
- Asynchronous Processing: Non-blocking I/O operations
- Resource Pooling: Connection and worker thread pools
- Load Balancing: Distribute requests across instances
4. Reliability¶
- Graceful Degradation: Fallback when external services fail
- Error Recovery: Automatic retry with exponential backoff
- Health Monitoring: Comprehensive health checks and metrics
- Data Consistency: Atomic operations and transaction safety
5. Extensibility¶
- Plugin System: Add new analyzers and validators
- Custom Standards: Support for organization-specific standards
- API Versioning: Backward compatibility maintenance
- Integration Points: Hooks for external systems
Security Architecture¶
1. Authentication & Authorization¶
Client Request
↓
API Key Validation
↓
Role-Based Access Control
↓
Resource Permissions Check
↓
Request Processing
Security measures: - API Key Management: Secure key generation and rotation - JWT Tokens: Stateless authentication with expiration - Role-Based Access: Granular permissions system - Rate Limiting: DDoS protection and resource management
2. Data Security¶
- Encryption: TLS for transport, AES for storage
- Sanitization: Input validation and output encoding
- Audit Logging: Comprehensive activity tracking
- Privacy Protection: No sensitive code storage
3. Network Security¶
- CORS Configuration: Proper cross-origin controls
- Input Validation: Strict request validation
- Output Filtering: Sensitive data redaction
- Network Isolation: Firewall and VPC configuration
Monitoring & Observability¶
1. Metrics Collection¶
Application Metrics: - Request count and latency - Validation success/failure rates - Cache hit/miss ratios - Memory and CPU usage
Business Metrics: - Standards usage frequency - Validation coverage - Auto-fix success rates - User adoption trends
2. Logging Strategy¶
Log Levels: - ERROR: System errors and failures - WARNING: Performance issues and degradation - INFO: Normal operation events - DEBUG: Detailed troubleshooting information
Log Formats: - Structured JSON for machine processing - Human-readable for development - Audit logs for compliance
3. Health Checks¶
Endpoint: /health
{
"status": "healthy",
"timestamp": "2024-01-15T10:30:00Z",
"components": {
"database": "healthy",
"cache": "healthy",
"standards_repo": "healthy",
"external_apis": "degraded"
},
"metrics": {
"uptime": "7d 14h 32m",
"memory_usage": "67%",
"cache_hit_rate": "94%"
}
}
Deployment Architecture¶
1. Single Instance Deployment¶
┌─────────────────────────┐
│ Load Balancer │
└───────────┬─────────────┘
│
┌───────────▼─────────────┐
│ MCP Standards Server │
│ │
│ ┌─────────┐ ┌─────────┐ │
│ │ App │ │ Cache │ │
│ │ Server │ │ (Redis) │ │
│ └─────────┘ └─────────┘ │
└─────────────────────────┘
2. High Availability Deployment¶
┌─────────────────────────┐
│ Load Balancer │
└───────┬─────────┬───────┘
│ │
┌───────▼───┐ ┌───▼───────┐
│ Server 1 │ │ Server 2 │
└───────┬───┘ └───┬───────┘
│ │
┌───▼─────────▼───┐
│ Shared Cache │
│ (Redis) │
└─────────────────┘
3. Microservices Deployment¶
┌─────────────────────────┐
│ API Gateway │
└───┬─────────┬───────────┘
│ │
┌───▼───┐ ┌───▼─────────┐
│ Auth │ │ Standards │
│Service│ │ Service │
└───────┘ └─────────────┘
│ │
┌───▼─────────▼───────────┐
│ Validation Service │
└─────────────────────────┘
Development Architecture¶
1. Code Organization¶
src/
├── core/ # Core business logic
│ ├── mcp/ # MCP protocol implementation
│ ├── standards/ # Standards engine
│ ├── validation/ # Validation engine
│ └── cache/ # Caching layer
├── analyzers/ # Language analyzers
├── api/ # REST API (optional)
├── cli/ # Command-line interface
└── utils/ # Shared utilities
2. Testing Strategy¶
- Unit Tests: Individual component testing
- Integration Tests: Component interaction testing
- End-to-End Tests: Full workflow validation
- Performance Tests: Load and stress testing
- Security Tests: Vulnerability scanning
3. Development Workflow¶
1. Feature Development
↓
2. Unit Testing
↓
3. Integration Testing
↓
4. Code Review
↓
5. Performance Testing
↓
6. Security Scanning
↓
7. Deployment
Technology Stack¶
Core Technologies¶
- Python 3.11+: Main implementation language
- FastAPI: HTTP server framework
- Pydantic: Data validation and serialization
- SQLAlchemy: Database ORM (for analytics)
- Redis: Caching and session storage
- asyncio: Asynchronous programming
External Dependencies¶
- Git: Standards repository management
- Docker: Containerization
- NLTK: Natural language processing
- sentence-transformers: Semantic search
- ChromaDB: Vector database for embeddings
Development Tools¶
- pytest: Testing framework
- black: Code formatting
- mypy: Type checking
- ruff: Linting
- pre-commit: Git hooks
Future Architecture Considerations¶
1. Planned Enhancements¶
- GraphQL API: More efficient data fetching
- Event Streaming: Real-time updates with Kafka
- ML Models: AI-powered standard recommendations
- Blockchain: Immutable standards versioning
2. Scalability Improvements¶
- Kubernetes: Container orchestration
- Service Mesh: Advanced networking
- Distributed Caching: Global cache coherence
- Edge Computing: Regional standard caching
3. Integration Expansion¶
- IDE Plugins: More editor support
- Cloud Platforms: AWS, GCP, Azure integration
- CI/CD Tools: Enhanced pipeline integration
- Security Tools: SAST/DAST integration
For implementation details, see the Standards Engine and Token Optimization documentation.