Skip to content

Architecture Overview

Comprehensive overview of MCP Standards Server architecture and design principles.

System Architecture

┌─────────────────────────────────────────────────────────────────┐
│                        Client Layer                            │
├─────────────────┬─────────────────┬─────────────────────────────┤
│   IDE Plugins   │   CLI Tools     │   CI/CD Integrations       │
│   (VS Code,     │   (mcp-std)     │   (GitHub Actions,         │
│    JetBrains)   │                 │    GitLab CI, Jenkins)     │
└─────────────────┴─────────────────┴─────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│                    MCP Protocol Layer                          │
├─────────────────────────────────────────────────────────────────┤
│  • Tool Registration     • Message Routing                     │
│  • Schema Validation     • Error Handling                      │
│  • Authentication        • Request/Response Management         │
└─────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│                      API Gateway                               │
├─────────────────────────────────────────────────────────────────┤
│  • Rate Limiting         • CORS Handling                       │
│  • Request Validation    • Response Formatting                 │
│  • Metrics Collection    • Health Checks                       │
└─────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│                    Business Logic Layer                        │
├─────────────┬─────────────────┬─────────────────┬─────────────────┤
│   Standards │   Validation    │   Rule Engine   │   Analytics     │
│   Engine    │   Engine        │                 │   Engine        │
│             │                 │                 │                 │
│ • Discovery │ • Multi-lang    │ • Condition     │ • Usage Stats   │
│ • Selection │   Analysis      │   Evaluation    │ • Performance   │
│ • Metadata  │ • Auto-fix      │ • Priority      │ • Reporting     │
│ • Caching   │ • Reporting     │   Resolution    │ • Trends        │
└─────────────┴─────────────────┴─────────────────┴─────────────────┘
┌─────────────────────────────────────────────────────────────────┐
│                     Storage Layer                              │
├─────────────┬─────────────────┬─────────────────┬─────────────────┤
│  Standards  │   Cache Layer   │   Config Store  │   Analytics DB  │
│  Repository │                 │                 │                 │
│             │ • Redis (L1)    │ • YAML Files    │ • SQLite        │
│ • Git Repo  │ • File (L2)     │ • Env Vars      │ • Metrics       │
│ • Local Dir │ • Memory (Hot)  │ • Validation    │ • Audit Logs    │
│ • Sync Mgmt │ • Compression   │ • Defaults      │ • Performance   │
└─────────────┴─────────────────┴─────────────────┴─────────────────┘

Core Components

1. MCP Server Core

The central component implementing the Model Context Protocol specification.

Key responsibilities: - Protocol message handling - Tool registration and discovery - Client connection management - Authentication and authorization - Error handling and recovery

Implementation files: - src/mcp_server.py - Main server implementation - src/core/mcp/ - MCP protocol handlers - src/core/mcp/tools/ - MCP tool implementations

2. Standards Engine

Manages standards repository, discovery, and selection logic.

Key features: - Standards Discovery: Automatic detection of applicable standards - Metadata Management: Standards metadata and relationships - Rule-based Selection: Intelligent standard selection using rules - Semantic Search: Content-based standard discovery - Caching: Multi-tier caching for performance

Implementation files: - src/core/standards/engine.py - Main engine - src/core/standards/rule_engine.py - Rule evaluation - src/core/standards/semantic_search.py - Semantic search - src/core/standards/sync.py - Repository synchronization

3. Validation Engine

Multi-language code analysis and validation system.

Supported languages: - Python (AST analysis, PEP compliance) - JavaScript/TypeScript (ESLint integration, patterns) - Go (go vet, golint integration) - Java (PMD, SpotBugs integration) - Rust (clippy integration)

Key features: - Multi-language Analysis: Language-specific analyzers - Auto-fix Capabilities: Automatic issue resolution - Incremental Validation: Only validate changed code - Parallel Processing: Concurrent file analysis - Custom Rules: User-defined validation rules

Implementation files: - src/analyzers/ - Language-specific analyzers - src/core/validation/ - Validation engine core

4. Cache Layer

Multi-tier caching system for optimal performance.

Cache Architecture:

L0: Memory Cache (Hot Data)
├── Recently accessed standards
├── Parsed rule trees
└── Active validation results

L1: Redis Cache (Warm Data)
├── Standards metadata
├── Search indexes
└── User sessions

L2: File Cache (Cold Data)
├── Full standards content
├── Compiled rules
└── Historical analytics

Features: - Smart Eviction: LRU with priority weighting - Compression: Gzip compression for large data - TTL Management: Configurable time-to-live - Cache Warming: Pre-populate frequently used data

5. Rule Engine

Condition-based standards selection and validation rules.

Rule Types: - Project Type Rules: Web app, API, CLI, library - Language Rules: Python, JavaScript, Go, etc. - Framework Rules: React, Django, Express, etc. - Requirement Rules: Security, accessibility, performance - Context Rules: File type, directory structure

Rule Evaluation:

# Example rule structure
rule = {
    "id": "react-typescript-web-app",
    "conditions": {
        "project_type": ["web_application"],
        "framework": ["react"],
        "language": ["typescript"]
    },
    "standards": ["react-patterns", "typescript-strict"],
    "priority": 10
}

Data Flow

1. Standards Synchronization

1. Timer/Manual Trigger
2. Git Repository Check
3. Download New/Changed Standards
4. Parse and Validate
5. Update Cache
6. Notify Clients

2. Standard Selection

1. Client Request (project context)
2. Rule Engine Evaluation
3. Semantic Search (if needed)
4. Priority Resolution
5. Cache Result
6. Return Applicable Standards

3. Code Validation

1. Validation Request
2. Language Detection
3. Standard Selection
4. File Analysis (Parallel)
5. Rule Application
6. Auto-fix (if enabled)
7. Result Aggregation
8. Report Generation

Design Principles

1. Modularity

  • Loose Coupling: Components communicate through well-defined interfaces
  • Plugin Architecture: Extensible analyzer and validator system
  • Configuration-Driven: Behavior controlled through configuration
  • Language Agnostic: Core engine independent of specific languages

2. Performance

  • Lazy Loading: Load standards and rules on-demand
  • Caching Strategy: Multi-tier caching with intelligent eviction
  • Parallel Processing: Concurrent validation and analysis
  • Resource Management: Memory and CPU usage optimization

3. Scalability

  • Horizontal Scaling: Multiple server instances with shared cache
  • Asynchronous Processing: Non-blocking I/O operations
  • Resource Pooling: Connection and worker thread pools
  • Load Balancing: Distribute requests across instances

4. Reliability

  • Graceful Degradation: Fallback when external services fail
  • Error Recovery: Automatic retry with exponential backoff
  • Health Monitoring: Comprehensive health checks and metrics
  • Data Consistency: Atomic operations and transaction safety

5. Extensibility

  • Plugin System: Add new analyzers and validators
  • Custom Standards: Support for organization-specific standards
  • API Versioning: Backward compatibility maintenance
  • Integration Points: Hooks for external systems

Security Architecture

1. Authentication & Authorization

Client Request
API Key Validation
Role-Based Access Control
Resource Permissions Check
Request Processing

Security measures: - API Key Management: Secure key generation and rotation - JWT Tokens: Stateless authentication with expiration - Role-Based Access: Granular permissions system - Rate Limiting: DDoS protection and resource management

2. Data Security

  • Encryption: TLS for transport, AES for storage
  • Sanitization: Input validation and output encoding
  • Audit Logging: Comprehensive activity tracking
  • Privacy Protection: No sensitive code storage

3. Network Security

  • CORS Configuration: Proper cross-origin controls
  • Input Validation: Strict request validation
  • Output Filtering: Sensitive data redaction
  • Network Isolation: Firewall and VPC configuration

Monitoring & Observability

1. Metrics Collection

Application Metrics: - Request count and latency - Validation success/failure rates - Cache hit/miss ratios - Memory and CPU usage

Business Metrics: - Standards usage frequency - Validation coverage - Auto-fix success rates - User adoption trends

2. Logging Strategy

Log Levels: - ERROR: System errors and failures - WARNING: Performance issues and degradation - INFO: Normal operation events - DEBUG: Detailed troubleshooting information

Log Formats: - Structured JSON for machine processing - Human-readable for development - Audit logs for compliance

3. Health Checks

Endpoint: /health

{
  "status": "healthy",
  "timestamp": "2024-01-15T10:30:00Z",
  "components": {
    "database": "healthy",
    "cache": "healthy",
    "standards_repo": "healthy",
    "external_apis": "degraded"
  },
  "metrics": {
    "uptime": "7d 14h 32m",
    "memory_usage": "67%",
    "cache_hit_rate": "94%"
  }
}

Deployment Architecture

1. Single Instance Deployment

┌─────────────────────────┐
│    Load Balancer        │
└───────────┬─────────────┘
┌───────────▼─────────────┐
│   MCP Standards Server  │
│                         │
│ ┌─────────┐ ┌─────────┐ │
│ │ App     │ │ Cache   │ │
│ │ Server  │ │ (Redis) │ │
│ └─────────┘ └─────────┘ │
└─────────────────────────┘

2. High Availability Deployment

┌─────────────────────────┐
│    Load Balancer        │
└───────┬─────────┬───────┘
        │         │
┌───────▼───┐ ┌───▼───────┐
│ Server 1  │ │ Server 2  │
└───────┬───┘ └───┬───────┘
        │         │
    ┌───▼─────────▼───┐
    │  Shared Cache   │
    │    (Redis)      │
    └─────────────────┘

3. Microservices Deployment

┌─────────────────────────┐
│      API Gateway        │
└───┬─────────┬───────────┘
    │         │
┌───▼───┐ ┌───▼─────────┐
│ Auth  │ │ Standards   │
│Service│ │ Service     │
└───────┘ └─────────────┘
    │         │
┌───▼─────────▼───────────┐
│   Validation Service    │
└─────────────────────────┘

Development Architecture

1. Code Organization

src/
├── core/                 # Core business logic
│   ├── mcp/              # MCP protocol implementation
│   ├── standards/        # Standards engine
│   ├── validation/       # Validation engine
│   └── cache/            # Caching layer
├── analyzers/            # Language analyzers
├── api/                  # REST API (optional)
├── cli/                  # Command-line interface
└── utils/                # Shared utilities

2. Testing Strategy

  • Unit Tests: Individual component testing
  • Integration Tests: Component interaction testing
  • End-to-End Tests: Full workflow validation
  • Performance Tests: Load and stress testing
  • Security Tests: Vulnerability scanning

3. Development Workflow

1. Feature Development
2. Unit Testing
3. Integration Testing
4. Code Review
5. Performance Testing
6. Security Scanning
7. Deployment

Technology Stack

Core Technologies

  • Python 3.11+: Main implementation language
  • FastAPI: HTTP server framework
  • Pydantic: Data validation and serialization
  • SQLAlchemy: Database ORM (for analytics)
  • Redis: Caching and session storage
  • asyncio: Asynchronous programming

External Dependencies

  • Git: Standards repository management
  • Docker: Containerization
  • NLTK: Natural language processing
  • sentence-transformers: Semantic search
  • ChromaDB: Vector database for embeddings

Development Tools

  • pytest: Testing framework
  • black: Code formatting
  • mypy: Type checking
  • ruff: Linting
  • pre-commit: Git hooks

Future Architecture Considerations

1. Planned Enhancements

  • GraphQL API: More efficient data fetching
  • Event Streaming: Real-time updates with Kafka
  • ML Models: AI-powered standard recommendations
  • Blockchain: Immutable standards versioning

2. Scalability Improvements

  • Kubernetes: Container orchestration
  • Service Mesh: Advanced networking
  • Distributed Caching: Global cache coherence
  • Edge Computing: Regional standard caching

3. Integration Expansion

  • IDE Plugins: More editor support
  • Cloud Platforms: AWS, GCP, Azure integration
  • CI/CD Tools: Enhanced pipeline integration
  • Security Tools: SAST/DAST integration

For implementation details, see the Standards Engine and Token Optimization documentation.