Template Architecture Design¶
Document Type: Architecture Design Document Version: 1.0.0 Date: 2025-10-17 Status: Design Phase
Executive Summary¶
This document defines the optimal structure for two production-ready templates that enable users to kickstart projects with AI assistance:
- KICKSTART_REPO.md - Template users copy to their repository root
- PROJECT_PLAN_TEMPLATE.md - Template LLMs use to generate comprehensive project documentation
Design Philosophy: Progressive disclosure, LLM-friendly, works standalone, self-documenting, production-ready.
Template 1: KICKSTART_REPO.md¶
Purpose¶
A standalone, fill-in-the-blank template that users copy to their new repository root. It works without requiring the standards repository to be present and guides LLMs to:
- Auto-detect the tech stack from repository contents
- Generate a comprehensive PROJECT_PLAN.md
- Integrate with @loaddirectives if available
- Provide smart defaults for common scenarios
Content Architecture¶
Section 1: Header & Quick Start (Lines 1-50)¶
Purpose: Immediate orientation and 30-second start path
# 🚀 Project Kickstart
**Auto-generate project structure, standards, and documentation using AI.**
## Quick Start (30 seconds)
1. Fill in basic details below (or leave blank for auto-detection)
2. Copy this entire file to your AI assistant (Claude, ChatGPT, Gemini)
3. AI will analyze your repo and generate PROJECT_PLAN.md
---
Rationale:
- Clear value proposition immediately
- Minimal friction to start
- Works even if user doesn't fill anything in
Section 2: Project Basics (Lines 51-120)¶
Purpose: Essential project information with smart defaults
## Project Information
### Basic Details
**Project Name**: [Auto-detect from repo name OR enter manually]
**Project Type**: [Auto-detect OR select: API / Web App / Mobile / CLI / Data Pipeline / ML Service]
**Primary Language**: [Auto-detect from files OR enter: Python / TypeScript / Go / Java / etc.]
**Timeline**: [Enter: MVP / 3-month / 6-month OR leave blank]
### Tech Stack (Optional - AI will auto-detect)
**Frontend**: [e.g., React, Vue, Angular, or N/A]
**Backend**: [e.g., FastAPI, Express, Django, or N/A]
**Database**: [e.g., PostgreSQL, MongoDB, MySQL, or N/A]
**Infrastructure**: [e.g., Docker, Kubernetes, AWS, or N/A]
### Team Context (Optional)
**Team Size**: [Solo / Small (2-5) / Medium (6-15) / Large (15+)]
**Experience Level**: [Beginner / Intermediate / Expert]
**Compliance Needs**: [None / SOC2 / HIPAA / PCI-DSS / GDPR]
Rationale:
- Bracketed placeholders guide without overwhelming
- "Auto-detect" reduces friction
- Optional sections allow quick start
- Compliance captured early for security integration
Section 3: AI Instructions (Lines 121-250)¶
Purpose: Direct the LLM's analysis and generation process
---
## AI Assistant Instructions
You are analyzing this repository to generate a comprehensive project plan. Follow these steps:
### Step 1: Repository Analysis
Scan the repository and detect:
```yaml
tech_stack:
  languages: []        # From file extensions
  frameworks: []       # From package.json, requirements.txt, go.mod, etc.
  databases: []        # From config files, docker-compose.yml
  infrastructure: []   # From Dockerfiles, k8s manifests, terraform
project_type: ""      # API / Web App / Mobile / CLI / Data Pipeline / ML Service
primary_language: ""  # Most prominent language
confidence: 0.0       # 0.0-1.0 confidence in detection
Detection Rules:
- If package.json+src/components/→ React/Vue/Angular frontend
- If requirements.txt+app/main.py→ Python backend
- If Dockerfilepresent → Containerized deployment
- If .github/workflows/→ CI/CD already configured
- If tests/directory → Testing already considered
Step 2: Standards Recommendation¶
Based on detected tech stack, recommend standards from: Standards Repository: https://github.com/williamzujkowski/standards
Use Product Matrix Syntax:
@load product:[type]              # e.g., @load product:api
@load [product:xxx + CS:lang]     # e.g., @load [product:api + CS:python]
@load [CS:lang + TS:* + SEC:*]    # All testing and security standards
Standard Code Reference:
- CS = Coding Standards (language-specific)
- TS = Testing Standards (framework-specific)
- SEC = Security Standards (auth, secrets, encryption)
- FE = Frontend Standards (React, Vue, mobile)
- DOP = DevOps Standards (CI/CD, IaC)
- DE = Data Engineering (pipelines, quality)
- NIST-IG = NIST 800-53r5 compliance (auto-included with SEC)
Examples:
- Python API: @load [product:api + CS:python + TS:pytest + SEC:*]
- React App: @load [product:frontend-web + FE:react + SEC:auth]
- Data Pipeline: @load [product:data-pipeline + DE:* + OBS:monitoring]
Step 3: Generate PROJECT_PLAN.md¶
Create a comprehensive project plan using the template at: https://github.com/williamzujkowski/standards/blob/master/templates/PROJECT_PLAN_TEMPLATE.md
Required Sections:
- Project Overview (with detected tech stack)
- Standards Alignment (with @load directives)
- Architecture & Structure (directory tree)
- Implementation Phases (timeline with milestones)
- Quality Gates (testing, security, compliance)
- Quick Start Commands (setup, run, test, deploy)
Step 4: Configuration Generation¶
Generate starter files based on detected stack:
- README.mdwith setup instructions
- Language-specific config (package.json,pyproject.toml,go.mod)
- Testing config (.jest.config.js,pytest.ini, etc.)
- CI/CD pipeline (.github/workflows/ci.yml)
- Docker setup (Dockerfile,docker-compose.yml)
- Environment template (.env.example)
Step 5: Validation Checklist¶
Ensure generated plan includes:
- ✅ All required sections complete
- ✅ Tech stack matches repository contents
- ✅ Standards codes are valid
- ✅ Quick start commands are executable
- ✅ Directory structure is sensible
- ✅ Security measures included
- ✅ Testing strategy defined
- ✅ CI/CD pipeline included
**Rationale**:
- Explicit step-by-step process reduces ambiguity
- Code blocks make instructions clear
- Examples prevent confusion
- Validation ensures quality output
- Links to standards repo for reference
#### Section 4: Fallback Mode (Lines 251-320)
**Purpose**: Handle cases where repository is empty or AI can't access it
```markdown
---
## Fallback: Manual Project Description
**If repository is empty or AI cannot analyze files, use this section:**
### What I'm Building
[Describe your project in 2-3 sentences. What problem does it solve? Who uses it?]
### Core Features
1. [Feature 1 - e.g., "User authentication with OAuth2"]
2. [Feature 2 - e.g., "RESTful API for data access"]
3. [Feature 3 - e.g., "Real-time notifications via WebSocket"]
### Technical Requirements
**Must Have:**
- [Requirement 1 - e.g., "Deploy to AWS Lambda"]
- [Requirement 2 - e.g., "Support 1000 concurrent users"]
- [Requirement 3 - e.g., "HIPAA compliant data handling"]
**Nice to Have:**
- [Optional feature 1]
- [Optional feature 2]
### Known Constraints
- [Constraint 1 - e.g., "Must integrate with legacy SOAP API"]
- [Constraint 2 - e.g., "Budget: $500/month for infrastructure"]
Rationale:
- Provides escape hatch for edge cases
- Keeps users from getting stuck
- Simple structure lowers barrier
Section 5: Integration Hooks (Lines 321-380)¶
Purpose: Connect with standards repository features if available
---
## Advanced: Standards Repository Integration
**If you have the standards repository available:**
### Skills System (98% Token Reduction)
Instead of loading full documents, use progressive skills:
```bash
# Recommend skills based on this repo
python3 /path/to/standards/scripts/skill-loader.py recommend ./
# Load recommended skills
@load product:api --level 1
# Token comparison:
# - All standards: ~150,000 tokens
# - Skills Level 1: ~1,755 tokens (98.8% reduction)
Router Integration¶
If using Claude Code with CLAUDE.md router:
# Fast path syntax
@load product:api
@load product:frontend-web
@load [product:api + CS:python + TS:pytest]
Manual Standards Loading¶
# Browse available standards
https://github.com/williamzujkowski/standards/blob/master/docs/standards/UNIFIED_STANDARDS.md
# Copy relevant sections to your project
https://github.com/williamzujkowski/standards/tree/master/examples/project-templates
Output Format¶
Expected AI Response:
- Tech Stack Analysis (YAML format)
- Standards Recommendations (@load directives)
- PROJECT_PLAN.md (complete, ready to save)
- Starter Files (README, configs, CI/CD)
- Quick Start Commands (bash scripts)
Save the generated files and start building!
**Rationale**:
- Makes advanced features discoverable
- Provides token efficiency information
- Shows integration points without requiring them
- Clear expectations for output
### Key Design Decisions
#### Decision 1: Standalone Operation
**Rationale**: Users may not have the standards repository cloned locally. The template must:
- Work in isolation
- Embed essential context
- Provide fallback URLs to standards
- Not break if standards repo is unavailable
**Implementation**: All critical information embedded; external links are supplementary.
#### Decision 2: Progressive Disclosure
**Rationale**: Users have different needs and time constraints.
**Implementation**:
- Quick Start section for 30-second usage
- Optional sections for detailed configuration
- Advanced section for power users
- Fallback section for edge cases
#### Decision 3: Dual-Mode Operation
**Modes**:
1. **Auto-Detection Mode**: AI scans repository files
2. **Manual Mode**: User fills in project description
**Rationale**: Handles both "empty new project" and "analyze existing code" scenarios.
#### Decision 4: LLM-Agnostic Language
**Rationale**: Works with Claude, ChatGPT, Gemini, Cursor, and future LLMs.
**Implementation**:
- Clear natural language instructions
- No tool-specific syntax (except optional sections)
- Standard markdown formatting
- Explicit examples for all concepts
### Usage Flow Examples
#### Example 1: New Python API Project
User Actions:
- Creates new empty repo
- Copies KICKSTART_REPO.md to repo root
- Fills in: Project Name: "Task Manager API", Project Type: "API"
- Pastes entire file to Claude
Claude Response:
- Detects: Empty repo, user wants Python API
- Recommends: @load [product:api + CS:python + TS:pytest + SEC:*]
- Generates: PROJECT_PLAN.md with FastAPI structure
- Creates: pyproject.toml, pytest.ini, Dockerfile, .github/workflows/ci.yml
- Provides: Setup commands (poetry install, pytest, docker build)
User Gets:
- Complete project structure
- Standards-aligned configuration
- Ready to code in 5 minutes
User Actions:
- Has existing React app with some code
- Copies KICKSTART_REPO.md to repo root
- Leaves all fields blank (triggers auto-detection)
- Pastes entire file to ChatGPT
ChatGPT Response:
- Scans: package.json, src/components/, detects React + TypeScript
- Recommends: @load [product:frontend-web + FE:react + TS:vitest]
- Generates: PROJECT_PLAN.md documenting current state + improvements
- Suggests: Missing tests, CI/CD, accessibility checks
- Creates: Updated configs, GitHub Actions, testing setup
User Gets:
- Documentation of existing project
- Gaps identified and filled
- Production-ready CI/CD
---
## Template 2: PROJECT_PLAN_TEMPLATE.md
### Purpose
A **comprehensive markdown template** that LLMs use to generate complete project documentation. It serves as:
1. The target format for AI-generated plans
2. A reference for manual project planning
3. A living document updated throughout development
4. A source of truth for team alignment
### Content Architecture
#### Section 1: Document Header (Lines 1-30)
**Purpose**: Metadata and version tracking
```markdown
# Project Plan: [PROJECT_NAME]
**Document Version**: 1.0.0
**Last Updated**: [YYYY-MM-DD]
**Status**: [Planning / In Progress / Production]
**Owner**: [Team/Individual Name]
---
## Document Purpose
This project plan serves as the single source of truth for:
- Technical architecture and implementation details
- Standards alignment and quality gates
- Timeline and milestone tracking
- Team responsibilities and deliverables
**Generated By**: AI Assistant (Claude/ChatGPT/Gemini)
**Based On**: [KICKSTART_REPO.md OR Manual Input]
**Standards Repository**: https://github.com/williamzujkowski/standards
---
## Quick Navigation
- [Project Overview](#project-overview)
- [Tech Stack](#tech-stack-analysis)
- [Standards Alignment](#standards-alignment)
- [Architecture](#system-architecture)
- [Implementation Timeline](#implementation-phases)
- [Quality Gates](#quality-gates)
- [Security](#security-implementation)
- [Testing](#testing-strategy)
- [Deployment](#deployment-strategy)
- [Team](#team-roles)
---
Rationale:
- Establishes document as living artifact
- Quick navigation for large documents
- Metadata enables version tracking
- Clear purpose prevents scope creep
Section 2: Project Overview (Lines 31-100)¶
Purpose: High-level project description and context
## Project Overview
### Executive Summary
[2-3 paragraph description of the project]
**Problem Statement**: [What problem are we solving?]
**Solution Approach**: [How are we solving it?]
**Success Criteria**: [How do we measure success?]
### Project Metadata
| Attribute | Value |
|-----------|-------|
| **Project Type** | [API / Web App / Mobile / CLI / Data Pipeline / ML Service] |
| **Primary Language** | [Python / TypeScript / Go / Java / etc.] |
| **Deployment Target** | [AWS / GCP / Azure / On-Premise / Hybrid] |
| **Team Size** | [Solo / 2-5 / 6-15 / 15+] |
| **Timeline** | [MVP: X weeks, Production: Y weeks] |
| **Budget** | [Development: $X, Infrastructure: $Y/month] |
### Stakeholders
| Role | Name/Team | Responsibilities |
|------|-----------|------------------|
| Product Owner | [Name] | Feature prioritization, requirements |
| Tech Lead | [Name] | Architecture, technical decisions |
| Dev Team | [Names] | Implementation, testing |
| Security Lead | [Name] | Security review, compliance |
| DevOps | [Name/Team] | Infrastructure, CI/CD |
### Project Context
**Business Drivers**:
- [Driver 1 - e.g., "Reduce customer onboarding time by 50%"]
- [Driver 2]
- [Driver 3]
**Key Assumptions**:
1. [Assumption 1 - e.g., "Users have modern browsers (Chrome 90+)"]
2. [Assumption 2]
**Known Constraints**:
1. [Constraint 1 - e.g., "Must integrate with legacy LDAP system"]
2. [Constraint 2]
**Out of Scope** (Explicitly NOT included):
- [Item 1]
- [Item 2]
Rationale:
- Table format makes metadata scannable
- Stakeholders section clarifies roles early
- Context section prevents assumption gaps
- Out of scope prevents feature creep
Section 3: Tech Stack Analysis (Lines 101-180)¶
Purpose: Document detected/chosen technology stack with rationale
## Tech Stack Analysis
### Detection Summary
**Detection Method**: [Auto-detected from repository / Manually specified / Hybrid]
**Confidence Level**: [High (90%+) / Medium (70-89%) / Low (<70%)]
**Analysis Date**: [YYYY-MM-DD]
### Technology Breakdown
#### Primary Languages
| Language | Usage | Version | Rationale |
|----------|-------|---------|-----------|
| Python | Backend API | 3.11+ | Type hints, async support, ecosystem |
| TypeScript | Frontend | 5.0+ | Type safety, tooling support |
#### Frameworks & Libraries
**Backend:**
- **FastAPI** (v0.104+) - Modern async Python framework
  - Rationale: Auto OpenAPI docs, Pydantic validation, async/await
  - Alternatives considered: Django REST, Flask
**Frontend:**
- **React** (v18+) with **Vite**
  - Rationale: Component model, ecosystem, performance
  - Alternatives considered: Vue, Svelte
**Testing:**
- **pytest** (Backend) - Fixtures, parametrization, plugins
- **Vitest** (Frontend) - Vite-native, fast, compatible with Jest
#### Data Layer
| Component | Technology | Version | Purpose |
|-----------|-----------|---------|---------|
| Primary Database | PostgreSQL | 15+ | Relational data, ACID compliance |
| Cache | Redis | 7+ | Session storage, rate limiting |
| Message Queue | RabbitMQ | 3.12+ | Async task processing |
**Schema Management**: Alembic (migrations), SQLAlchemy (ORM)
#### Infrastructure
**Containerization:**
- Docker (multi-stage builds)
- Docker Compose (local development)
- Kubernetes (production)
**Cloud Provider**: AWS
- **Compute**: ECS Fargate (backend), S3 + CloudFront (frontend)
- **Database**: RDS PostgreSQL with read replicas
- **Networking**: VPC, ALB, Route53
- **Security**: Secrets Manager, WAF, GuardDuty
**CI/CD:**
- GitHub Actions (build, test, deploy)
- AWS CodeDeploy (blue/green deployments)
#### Development Tools
| Category | Tool | Purpose |
|----------|------|---------|
| Linting | Ruff (Python), ESLint (TS) | Code quality |
| Formatting | Black (Python), Prettier (TS) | Consistent style |
| Type Checking | mypy, TypeScript compiler | Static analysis |
| Pre-commit | pre-commit framework | Git hooks |
### Tech Stack Diagram
┌─────────────────────────────────────────────────┐ │ Clients │ │ (Web Browser, Mobile App) │ └────────────────┬────────────────────────────────┘ │ ▼ ┌─────────────────────────────────────────────────┐ │ CloudFront CDN + WAF │ └────────────────┬────────────────────────────────┘ │ ┌─────────┴─────────┐ ▼ ▼ ┌─────────────┐ ┌──────────────────┐ │ S3 Bucket │ │ Application │ │ (Static) │ │ Load Balancer │ └─────────────┘ └────────┬─────────┘ │ ┌────────┴────────┐ ▼ ▼ ┌──────────────┐ ┌──────────────┐ │ ECS Fargate │ │ ECS Fargate │ │ (API - 1) │ │ (API - 2) │ └──────┬───────┘ └──────┬───────┘ │ │ └────────┬────────┘ │ ┌────────────┼────────────┐ ▼ ▼ ▼ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ RDS │ │ Redis │ │ RabbitMQ │ │PostgreSQL│ │ Cache │ │ Queue │ └──────────┘ └──────────┘ └──────────┘
Rationale:
- Tables make comparisons easy
- Rationale for each choice prevents "why did we choose this?" questions
- Alternatives considered shows thoughtful decision-making
- Diagram provides visual understanding
- Version constraints prevent compatibility issues
Section 4: Standards Alignment (Lines 181-280)¶
Purpose: Map project to relevant standards from the repository
@load [product:api + CS:python + CS:typescript + TS:pytest + TS:vitest + SEC:* + NIST-IG:base]
**Token Efficiency**:
- Using Skills System Level 1: ~2,500 tokens
- Traditional full standards: ~150,000 tokens
- **Reduction**: 98.3%
### Applied Standards Matrix
| Standard Code | Document | Scope | Priority | Implementation Status |
|--------------|----------|-------|----------|---------------------|
| CS:python | Coding Standards (Python) | Backend code quality | High | ✅ Configured (Ruff, Black) |
| CS:typescript | Coding Standards (TypeScript) | Frontend code quality | High | ✅ Configured (ESLint, Prettier) |
| TS:pytest | Testing Standards (pytest) | Backend testing | High | 🟡 In Progress (70% coverage) |
| TS:vitest | Testing Standards (Vitest) | Frontend testing | High | 🟡 In Progress (60% coverage) |
| SEC:auth | Authentication Standards | User authentication | Critical | ⚪ Planned (OAuth2 + JWT) |
| SEC:secrets | Secrets Management | API keys, credentials | Critical | ✅ Configured (AWS Secrets Manager) |
| SEC:input-validation | Input Validation | API security | Critical | ✅ Configured (Pydantic) |
| SEC:encryption | Encryption Standards | Data protection | High | ⚪ Planned (TLS, at-rest encryption) |
| NIST-IG:base | NIST Baseline Controls | Compliance | High | 🟡 In Progress (40% tagged) |
| DOP:ci-cd | CI/CD Standards | Deployment automation | High | ✅ Configured (GitHub Actions) |
| OBS:monitoring | Observability | Production monitoring | Medium | ⚪ Planned (CloudWatch, Sentry) |
**Legend**: ✅ Complete | 🟡 In Progress | ⚪ Planned | ❌ Blocked
### NIST 800-53r5 Control Mapping
**Applicable Controls** (auto-included with SEC standards):
| Control ID | Control Name | Implementation | Evidence |
|-----------|--------------|----------------|----------|
| AC-2 | Account Management | User CRUD with role-based access | `src/auth/users.py` |
| IA-2 | Identification & Authentication | OAuth2 + JWT tokens | `src/auth/oauth.py` |
| AU-2 | Audit Events | Structured logging of security events | `src/middleware/audit.py` |
| SC-8 | Transmission Confidentiality | TLS 1.3 for all traffic | `infrastructure/alb.tf` |
| SC-28 | Protection of Information at Rest | Database encryption enabled | `infrastructure/rds.tf` |
**Control Tagging Example**:
```python
# @nist-controls AC-2, IA-2
async def create_user(user_data: UserCreate) -> User:
    """
    Create new user with role assignment.
    NIST Controls:
    - AC-2: Account creation with automated notifications
    - IA-2: Password requirements enforced via validation
    """
    # Implementation...
Standards Compliance Checklist¶
Coding Standards:
- ✅ Linter configured and passing (Ruff, ESLint)
- ✅ Formatter configured and passing (Black, Prettier)
- ✅ Type checking enabled (mypy, tsc)
- ✅ Pre-commit hooks installed
- ⚪ Code review process documented
Testing Standards:
- ✅ Test framework configured (pytest, Vitest)
- 🟡 Coverage >= 80% (currently 65%)
- ⚪ Integration tests defined
- ⚪ E2E tests implemented
- ⚪ Performance tests defined
Security Standards:
- ✅ Secrets management configured
- ⚪ Authentication implemented
- ⚪ Authorization implemented
- ⚪ Input validation on all endpoints
- ⚪ Security scanning in CI/CD
- ⚪ Dependency vulnerability scanning
Documentation Standards:
- ✅ README with setup instructions
- ⚪ API documentation (OpenAPI/Swagger)
- ⚪ Architecture diagrams
- ⚪ Deployment runbooks
- ⚪ Incident response procedures
**Rationale**:
- `@load` directive shows standards integration
- Token efficiency quantified
- Matrix provides clear status tracking
- NIST mapping ensures compliance
- Control tagging shows implementation
- Checklist makes gaps visible
#### Section 5: System Architecture (Lines 281-400)
**Purpose**: Define system design, components, and interactions
```markdown
## System Architecture
### Architecture Style
**Pattern**: Microservices with API Gateway
**Rationale**: Independent scaling, technology diversity, fault isolation
**Alternative Patterns Considered**:
- Monolith: Rejected (scaling limitations, deployment coupling)
- Serverless: Considered for future migration
### Component Architecture
┌──────────────────────────────────────────────────────┐ │ Client Layer │ │ (Web Browser, Mobile App, Third-party Integrations) │ └─────────────────────┬────────────────────────────────┘ │ ▼ ┌──────────────────────────────────────────────────────┐ │ API Gateway │ │ - Request routing │ │ - Rate limiting (100 req/min/user) │ │ - Authentication (JWT validation) │ │ - Request/response transformation │ └─────────────────────┬────────────────────────────────┘ │ ┌─────────────┼─────────────┐ ▼ ▼ ▼ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ Auth Service │ │ Core API │ │ Notification │ │ │ │ │ │ Service │ │ - Login │ │ - CRUD Ops │ │ - Email │ │ - Register │ │ - Business │ │ - SMS │ │ - Token Mgmt │ │ Logic │ │ - Push │ └──────┬───────┘ └──────┬───────┘ └──────┬───────┘ │ │ │ └────────────────┼────────────────┘ │ ┌───────────────┼───────────────┐ ▼ ▼ ▼ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ PostgreSQL │ │ Redis │ │ RabbitMQ │ │ (Primary) │ │ (Cache + │ │ (Async │ │ │ │ Sessions) │ │ Tasks) │ └──────────────┘ └──────────────┘ └──────────────┘
### Service Breakdown
#### Auth Service
**Responsibilities**:
- User registration and login
- OAuth2 authorization code flow
- JWT token generation and validation
- Password reset workflows
**API Endpoints**:
POST /auth/register POST /auth/login POST /auth/refresh POST /auth/logout GET /auth/me POST /auth/password-reset/request POST /auth/password-reset/confirm
**Dependencies**:
- PostgreSQL (user storage)
- Redis (session management, token blacklist)
- Email service (password reset, verification)
**Technology**: FastAPI, SQLAlchemy, python-jose (JWT)
#### Core API Service
**Responsibilities**:
- Business entity CRUD operations
- Domain logic execution
- Data validation and transformation
**API Endpoints**:
GET /api/v1/resources POST /api/v1/resources GET /api/v1/resources/{id} PUT /api/v1/resources/{id} DELETE /api/v1/resources/{id}
**Dependencies**:
- PostgreSQL (data persistence)
- Redis (caching frequently accessed data)
- RabbitMQ (async task delegation)
**Technology**: FastAPI, SQLAlchemy, Pydantic
### Data Architecture
#### Database Schema
**Users Table**:
```sql
CREATE TABLE users (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    email VARCHAR(255) UNIQUE NOT NULL,
    hashed_password TEXT NOT NULL,
    full_name VARCHAR(255),
    is_active BOOLEAN DEFAULT true,
    is_verified BOOLEAN DEFAULT false,
    role VARCHAR(50) DEFAULT 'user',
    created_at TIMESTAMP DEFAULT NOW(),
    updated_at TIMESTAMP DEFAULT NOW()
);
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_role ON users(role);
Resources Table (example):
CREATE TABLE resources (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    name VARCHAR(255) NOT NULL,
    description TEXT,
    owner_id UUID REFERENCES users(id) ON DELETE CASCADE,
    status VARCHAR(50) DEFAULT 'active',
    metadata JSONB,
    created_at TIMESTAMP DEFAULT NOW(),
    updated_at TIMESTAMP DEFAULT NOW()
);
CREATE INDEX idx_resources_owner ON resources(owner_id);
CREATE INDEX idx_resources_status ON resources(status);
CREATE INDEX idx_resources_metadata ON resources USING GIN (metadata);
Data Flow Diagram¶
Write Path:
Read Path (cached):
Read Path (cache miss):
Security Architecture¶
Defense in Depth Layers:
- Network Layer: VPC isolation, security groups, NACLs
- Application Layer: WAF rules, rate limiting, input validation
- Authentication Layer: OAuth2 + JWT, MFA optional
- Authorization Layer: RBAC with resource-level permissions
- Data Layer: Encryption at rest and in transit, field-level encryption for PII
Threat Model (STRIDE):
- Spoofing: JWT signature validation, OAuth2 flows
- Tampering: Input validation, HMAC for critical data
- Repudiation: Audit logging of all actions
- Information Disclosure: TLS everywhere, encrypted DB fields
- Denial of Service: Rate limiting, autoscaling, WAF
- Elevation of Privilege: RBAC, least privilege principle
Scalability Design¶
Horizontal Scaling:
- Stateless services (scale containers independently)
- Session data in Redis (shared state)
- Database read replicas (read-heavy workloads)
Vertical Scaling Limits:
- Services: 4GB memory, 2 vCPU (measured baseline)
- Database: RDS PostgreSQL (db.t4g.large initially, upgrade path to db.r6g.2xlarge)
Caching Strategy:
- L1: In-memory service cache (LRU, 100MB limit)
- L2: Redis cache (TTL: 5 minutes for reads, invalidate on writes)
Performance Targets: | Metric | Target | Monitoring | |--------|--------|------------| | API Response (p95) | < 200ms | CloudWatch | | API Response (p99) | < 500ms | CloudWatch | | Database Query (p95) | < 50ms | RDS Performance Insights | | Cache Hit Rate | > 80% | Redis INFO stats |
**Rationale**:
- Diagrams provide visual understanding
- Service breakdown clarifies responsibilities
- Database schemas are concrete, reviewable
- Security architecture addresses STRIDE threats
- Scalability design shows future-proofing
#### Section 6: Implementation Phases (Lines 401-550)
**Purpose**: Break down implementation into manageable phases with clear milestones
```markdown
## Implementation Phases
### Timeline Overview
**Total Duration**: 12 weeks (MVP in 8 weeks, production hardening in 4 weeks)
| Phase | Duration | Milestone | Success Criteria |
|-------|----------|-----------|-----------------|
| Phase 1: Foundation | Weeks 1-2 | Infrastructure + Basic API | Deployable hello-world service |
| Phase 2: Core Features | Weeks 3-6 | Authentication + CRUD | User can register, login, manage resources |
| Phase 3: Hardening | Weeks 7-8 | Testing + Security | 80% test coverage, security review passed |
| Phase 4: Production | Weeks 9-12 | Monitoring + Docs | Production deployment, runbooks complete |
---
### Phase 1: Foundation (Weeks 1-2)
**Goal**: Deployable infrastructure and hello-world API
**Week 1: Infrastructure Setup**
**Days 1-2: Development Environment**
- [ ] Initialize Git repository with .gitignore
- [ ] Set up project structure (src/, tests/, docs/, infrastructure/)
- [ ] Configure Python environment (pyproject.toml, .python-version)
- [ ] Configure Node environment (package.json, .nvmrc)
- [ ] Install development tools (Ruff, Black, ESLint, Prettier)
- [ ] Set up pre-commit hooks
- [ ] Create README with setup instructions
**Days 3-4: Infrastructure as Code**
- [ ] Define VPC, subnets, security groups (Terraform)
- [ ] Set up RDS PostgreSQL with backups
- [ ] Configure Redis cluster
- [ ] Create ECR repositories for container images
- [ ] Set up AWS Secrets Manager for credentials
- [ ] Document infrastructure architecture
**Day 5: CI/CD Pipeline**
- [ ] Configure GitHub Actions for backend tests
- [ ] Configure GitHub Actions for frontend build
- [ ] Set up Docker multi-stage build
- [ ] Create deployment workflow (staging environment)
- [ ] Configure AWS credentials in GitHub Secrets
**Week 2: Basic API**
**Days 6-8: FastAPI Skeleton**
- [ ] Create FastAPI application structure
- [ ] Set up database connection (SQLAlchemy)
- [ ] Implement health check endpoint (/health, /ready)
- [ ] Add request logging middleware
- [ ] Configure CORS for development
- [ ] Write unit tests for health endpoints
**Days 9-10: Deployment**
- [ ] Build and push Docker image to ECR
- [ ] Deploy to ECS Fargate (staging)
- [ ] Configure ALB and target groups
- [ ] Set up Route53 DNS records
- [ ] Verify deployment (health checks passing)
**Phase 1 Deliverables**:
- ✅ Working infrastructure (VPC, RDS, Redis, ECS)
- ✅ Deployable API (hello-world + health checks)
- ✅ CI/CD pipeline (automated tests + deployment)
- ✅ Documentation (README, architecture diagrams)
**Phase 1 Acceptance Criteria**:
```bash
# Can deploy to staging with one command
git push origin main
# → GitHub Actions runs
# → Tests pass
# → Docker image builds
# → Deploys to ECS
# → Health check returns 200 OK
# Can access API
curl https://api-staging.example.com/health
# → {"status": "healthy", "version": "0.1.0"}
Phase 2: Core Features (Weeks 3-6)¶
Goal: User authentication and basic CRUD operations
Week 3: Authentication Foundation
Days 11-13: User Model & Database
- Define User model (SQLAlchemy)
- Create Alembic migration for users table
- Implement password hashing (bcrypt)
- Add user repository layer (CRUD operations)
- Write unit tests for user repository
Days 14-15: Registration & Login
- Implement POST /auth/register endpoint
- Add email validation and uniqueness check
- Implement POST /auth/login endpoint
- Generate JWT access + refresh tokens
- Add token validation middleware
- Write integration tests for auth flows
Week 4: OAuth2 & Token Management
Days 16-18: OAuth2 Implementation
- Set up OAuth2 authorization code flow
- Implement token refresh endpoint
- Add token blacklist (Redis)
- Implement logout endpoint
- Add "Get Current User" endpoint (GET /auth/me)
- Write security tests (invalid tokens, expired tokens)
Days 19-20: Password Reset
- Implement password reset request (email token)
- Set up email service integration (SendGrid/SES)
- Implement password reset confirmation
- Add rate limiting for reset requests
- Write E2E tests for password reset flow
Week 5-6: Resource CRUD
Days 21-25: Core Business Logic
- Define Resource model (SQLAlchemy)
- Create Alembic migration for resources table
- Implement CRUD endpoints (GET, POST, PUT, DELETE /api/v1/resources)
- Add authorization checks (owner-only access)
- Implement pagination and filtering
- Write unit tests for business logic
Days 26-30: Frontend Integration
- Create React components for authentication
- Implement login/register forms
- Add JWT storage and auto-refresh
- Create resource list and detail views
- Add create/edit/delete forms
- Write frontend integration tests
Phase 2 Deliverables:
- ✅ Complete authentication system (register, login, logout, password reset)
- ✅ Core CRUD API for resources
- ✅ Frontend UI for authentication and resource management
- ✅ Integration tests covering happy paths and error cases
Phase 2 Acceptance Criteria:
# Can register a new user
curl -X POST https://api-staging.example.com/auth/register \
  -d '{"email": "user@example.com", "password": "SecurePass123!"}'
# → {"id": "uuid", "email": "user@example.com", "access_token": "jwt..."}
# Can create a resource
curl -X POST https://api-staging.example.com/api/v1/resources \
  -H "Authorization: Bearer jwt..." \
  -d '{"name": "My Resource", "description": "Test"}'
# → {"id": "uuid", "name": "My Resource", ...}
Phase 3: Hardening (Weeks 7-8)¶
Goal: Production-ready quality, security, and testing
Week 7: Testing & Coverage
Days 31-33: Test Suite Expansion
- Achieve 80% unit test coverage (backend)
- Achieve 80% unit test coverage (frontend)
- Add integration tests for all API endpoints
- Implement E2E tests (Playwright/Cypress)
- Add performance tests (Locust/k6)
Days 34-35: Security Hardening
- Run OWASP ZAP security scan
- Fix identified vulnerabilities
- Add dependency vulnerability scanning (Dependabot/Snyk)
- Implement rate limiting on all endpoints
- Add request size limits
Week 8: Code Review & Refinement
Days 36-38: Code Quality
- Refactor code based on linter feedback
- Add missing type hints (mypy --strict passes)
- Optimize database queries (N+1 query checks)
- Add database indexes for performance
- Review and update error handling
Days 39-40: Documentation
- Generate OpenAPI documentation (Swagger UI)
- Write API integration guide
- Document environment variables
- Create deployment runbook
- Add troubleshooting guide
Phase 3 Deliverables:
- ✅ Test coverage >= 80% (unit, integration, E2E)
- ✅ Security scan passing (no high/critical vulnerabilities)
- ✅ Performance benchmarks documented
- ✅ Complete API documentation
Phase 3 Acceptance Criteria:
# Tests pass with high coverage
pytest --cov=src --cov-report=term-missing
# → 82% coverage
# Security scan passes
zap-cli quick-scan https://api-staging.example.com
# → No high/critical findings
# Performance benchmarks met
k6 run performance/load-test.js
# → p95 response time < 200ms
Phase 4: Production Deployment (Weeks 9-12)¶
Goal: Production environment, monitoring, and operational readiness
Week 9-10: Production Infrastructure
Days 41-45: Production Setup
- Create production VPC and subnets
- Set up production RDS with multi-AZ
- Configure Redis cluster with replication
- Set up CloudFront CDN for static assets
- Enable WAF rules (OWASP Core Rule Set)
- Configure auto-scaling policies
Days 46-50: Monitoring & Observability
- Set up CloudWatch dashboards
- Configure CloudWatch alarms (error rate, latency, saturation)
- Integrate Sentry for error tracking
- Add structured logging (JSON format)
- Set up log aggregation (CloudWatch Logs Insights)
- Create on-call runbooks
Week 11-12: Launch Preparation
Days 51-55: Final Testing
- Perform load testing on production environment
- Run disaster recovery drill (database restore)
- Test auto-scaling behavior
- Verify backup and restore procedures
- Conduct security penetration testing
Days 56-60: Documentation & Training
- Finalize deployment documentation
- Create operational runbooks
- Write incident response procedures
- Train team on monitoring and alerts
- Prepare launch checklist
Phase 4 Deliverables:
- ✅ Production environment deployed
- ✅ Monitoring and alerting configured
- ✅ Operational runbooks complete
- ✅ Team trained on production operations
Phase 4 Acceptance Criteria:
# Production deployment successful
curl https://api.example.com/health
# → {"status": "healthy", "environment": "production"}
# Monitoring dashboards accessible
open https://console.aws.amazon.com/cloudwatch/dashboards/api-production
# Alerts configured and tested
aws cloudwatch put-metric-data --namespace "API" --metric-name "TestAlert" --value 100
# → PagerDuty alert received
Risk Mitigation¶
| Risk | Probability | Impact | Mitigation Strategy | 
|---|---|---|---|
| Database migration fails in production | Low | High | Test migrations on staging data, maintain rollback scripts | 
| Third-party API downtime (email service) | Medium | Medium | Implement retry logic, queue email tasks, have backup provider | 
| Security vulnerability discovered | Medium | High | Automated dependency scanning, regular security audits, bug bounty program | 
| Performance degradation under load | Medium | High | Load testing in phase 3, auto-scaling configured, caching strategy | 
| Team member unavailable | Low | Medium | Documentation, code reviews, knowledge sharing sessions | 
Dependency Management¶
External Dependencies:
- Email service (SendGrid/AWS SES) - Critical path: Week 4
- Domain registration and SSL certificates - Critical path: Week 1
- Third-party OAuth providers (Google, GitHub) - Optional: Post-MVP
Internal Dependencies:
- Infrastructure must be complete before API deployment
- Authentication must work before resource CRUD
- Testing framework must be set up before Phase 3
**Rationale**:
- Phased approach reduces risk
- Clear milestones enable tracking
- Day-by-day breakdown prevents ambiguity
- Acceptance criteria make "done" objective
- Risk mitigation shows contingency planning
#### Section 7: Quality Gates (Lines 551-650)
**Purpose**: Define automated checks and standards enforcement
```markdown
## Quality Gates
### Overview
Quality gates are automated checks that must pass before code merges or deploys. They enforce standards and prevent regressions.
### Pre-Commit Gates (Local)
**Triggered**: On `git commit`
**Tool**: pre-commit framework
**Checks**:
1. **Code Formatting**
   - Backend: Black (line length 100)
   - Frontend: Prettier (default config)
   - **Failure Action**: Auto-fix and re-stage
2. **Linting**
   - Backend: Ruff (all rules enabled)
   - Frontend: ESLint (airbnb-typescript config)
   - **Failure Action**: Block commit, display errors
3. **Type Checking**
   - Backend: mypy --strict
   - Frontend: tsc --noEmit
   - **Failure Action**: Block commit, display errors
4. **Security Scanning**
   - Detect hardcoded secrets (detect-secrets)
   - Check for common vulnerabilities (bandit for Python)
   - **Failure Action**: Block commit, display findings
5. **Trailing Whitespace & File Size**
   - Remove trailing whitespace
   - Prevent large files (> 500KB)
   - **Failure Action**: Auto-fix or block
**Configuration**:
```yaml
# .pre-commit-config.yaml
repos:
  - repo: https://github.com/psf/black
    rev: 23.12.0
    hooks:
      - id: black
        args: [--line-length=100]
  - repo: https://github.com/charliermarsh/ruff-pre-commit
    rev: v0.1.8
    hooks:
      - id: ruff
  - repo: https://github.com/pre-commit/mirrors-mypy
    rev: v1.7.1
    hooks:
      - id: mypy
        args: [--strict]
  - repo: https://github.com/Yelp/detect-secrets
    rev: v1.4.0
    hooks:
      - id: detect-secrets
Pull Request Gates (CI)¶
Triggered: On pull request creation/update Tool: GitHub Actions
Required Checks (all must pass):
- Unit Tests
- Backend: pytest with coverage >= 80%
- Frontend: vitest with coverage >= 80%
-  Failure Action: Block merge 
-  Integration Tests 
- API integration tests (all endpoints)
- Database migration tests (up/down)
-  Failure Action: Block merge 
-  Security Scanning 
- Dependency vulnerabilities (Snyk/Dependabot)
- Static analysis (Semgrep/CodeQL)
- Container image scanning (Trivy)
-  Failure Action: Block merge on high/critical 
-  Build Validation 
- Docker image builds successfully
- No build warnings
- Image size < 500MB (compressed)
-  Failure Action: Block merge 
-  Code Quality Metrics 
- Maintainability index >= 70 (SonarQube)
- No code smells or duplications
- Complexity <= 10 per function
- Failure Action: Warning (not blocking)
GitHub Actions Workflow:
# .github/workflows/pr-checks.yml
name: Pull Request Checks
on:
  pull_request:
    branches: [main, develop]
jobs:
  test-backend:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - name: Set up Python
        uses: actions/setup-python@v5
        with:
          python-version: '3.11'
      - name: Install dependencies
        run: |
          pip install poetry
          poetry install
      - name: Run tests
        run: poetry run pytest --cov=src --cov-report=xml --cov-fail-under=80
      - name: Upload coverage
        uses: codecov/codecov-action@v3
  test-frontend:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - name: Set up Node
        uses: actions/setup-node@v4
        with:
          node-version: '20'
      - name: Install dependencies
        run: npm ci
      - name: Run tests
        run: npm run test:coverage -- --coverage.lines=80
  security-scan:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - name: Run Trivy scanner
        uses: aquasecurity/trivy-action@master
        with:
          scan-type: 'fs'
          severity: 'HIGH,CRITICAL'
          exit-code: '1'
Deployment Gates (Staging)¶
Triggered: On merge to main branch Tool: GitHub Actions + AWS
Required Checks:
-  All PR Gates (must have passed) 
-  E2E Tests 
- Full user journeys (register → login → CRUD → logout)
- Cross-browser testing (Chrome, Firefox, Safari)
-  Failure Action: Rollback deployment 
-  Performance Tests 
- Load test (100 concurrent users)
- Response time p95 < 200ms
- Error rate < 1%
-  Failure Action: Rollback deployment 
-  Database Migration 
- Run Alembic migrations
- Verify migrations reversible
-  Failure Action: Halt deployment 
-  Health Checks 
- Service /health endpoint returns 200
- Database connectivity confirmed
- Redis connectivity confirmed
- Failure Action: Rollback deployment
Deployment Workflow:
# .github/workflows/deploy-staging.yml
name: Deploy to Staging
on:
  push:
    branches: [main]
jobs:
  deploy:
    runs-on: ubuntu-latest
    steps:
      - name: Build and push Docker image
        # ... (build steps)
      - name: Deploy to ECS
        # ... (deployment steps)
      - name: Run database migrations
        run: |
          aws ecs run-task --task-definition migrate-db
          # Wait for completion
      - name: Wait for service stability
        run: |
          aws ecs wait services-stable --cluster staging --services api
      - name: Run E2E tests
        run: npm run test:e2e -- --env=staging
      - name: Run performance tests
        run: k6 run performance/load-test.js
      - name: Verify health checks
        run: |
          curl -f https://api-staging.example.com/health || exit 1
Production Deployment Gates¶
Triggered: Manual approval after staging validation Tool: GitHub Actions (manual approval) + AWS CodeDeploy
Required Checks:
- Staging Validation
- All staging gates passed
- Manual QA sign-off
- Security review approval
-  Failure Action: Do not deploy 
-  Blue/Green Deployment 
- New version deployed to "green" environment
- Health checks pass on green
- Traffic gradually shifted (10% → 50% → 100%)
- Rollback if error rate increases
-  Failure Action: Automatic rollback 
-  Monitoring Validation 
- CloudWatch alarms not triggered
- Error rate < 0.5%
- Latency within SLA (p95 < 300ms)
-  Failure Action: Halt traffic shift 
-  Database Migration (if applicable) 
- Backward-compatible migration deployed first
- Data integrity checks pass
- Rollback plan tested
- Failure Action: Manual intervention required
Production Deployment Checklist:
- [ ] All staging gates passed
- [ ] Security review completed
- [ ] Load testing results reviewed
- [ ] Rollback plan documented
- [ ] On-call engineer notified
- [ ] Deployment window scheduled (off-peak hours)
- [ ] Database backup verified (< 1 hour old)
- [ ] Monitoring dashboards open
- [ ] Incident response team on standby
Quality Metrics Dashboard¶
Tracked Metrics:
| Metric | Target | Current | Trend | Tool | 
|---|---|---|---|---|
| Unit Test Coverage (Backend) | >= 80% | 78% | ⬆️ | pytest-cov | 
| Unit Test Coverage (Frontend) | >= 80% | 65% | ⬆️ | Vitest | 
| Integration Test Coverage | >= 70% | 70% | → | Custom reports | 
| Security Vulnerabilities (High/Critical) | 0 | 0 | → | Snyk | 
| Code Maintainability Index | >= 70 | 75 | → | SonarQube | 
| API Response Time (p95) | < 200ms | 185ms | ⬇️ | CloudWatch | 
| Error Rate | < 1% | 0.3% | → | Sentry | 
| Deployment Frequency | >= 2/week | 3/week | → | GitHub | 
| Mean Time to Recovery (MTTR) | < 1 hour | 45 min | ⬇️ | PagerDuty | 
Failure Recovery Procedures¶
If Pre-Commit Fails:
- Review errors displayed
- Fix issues manually or use auto-fix suggestions
- Re-stage files (git add)
- Retry commit
If PR Checks Fail:
- Review GitHub Actions logs
- Reproduce locally (actfor GitHub Actions simulation)
- Fix issues and push
- Checks re-run automatically
If Deployment Fails:
- Automatic rollback triggered
- Incident created in PagerDuty
- Review deployment logs
- Fix issues and redeploy
If Production Monitoring Alerts:
- Evaluate severity (P1-P4)
- Check runbook for issue
- Roll back if critical
- Post-mortem within 48 hours
**Rationale**:
- Automated gates prevent human error
- Clear failure actions reduce ambiguity
- Metrics dashboard provides visibility
- Recovery procedures reduce MTTR
- Production checklist ensures readiness
#### Section 8-12: Additional Sections (Lines 651-900)
Due to length, I'll provide an outline for the remaining sections:
**Section 8: Security Implementation (Lines 651-720)**
- Authentication architecture
- Authorization model (RBAC)
- Secrets management approach
- Data encryption (at rest, in transit)
- Security scanning tools
- Compliance checklist (NIST controls)
**Section 9: Testing Strategy (Lines 721-780)**
- Test pyramid (unit, integration, E2E)
- Coverage targets per layer
- Testing tools and frameworks
- Test data management
- Performance testing approach
**Section 10: Deployment Strategy (Lines 781-840)**
- Environment topology (dev, staging, prod)
- Blue/green deployment process
- Rollback procedures
- Database migration strategy
- Feature flags implementation
**Section 11: Monitoring & Operations (Lines 841-880)**
- Observability stack (logs, metrics, traces)
- Alerting rules and escalation
- Dashboard configuration
- Incident response procedures
- SLA definitions
**Section 12: Team & Responsibilities (Lines 881-900)**
- Team roster with roles
- RACI matrix for key decisions
- Communication channels
- Meeting cadence
- Escalation paths
---
### Key Design Decisions (PROJECT_PLAN_TEMPLATE.md)
#### Decision 1: Comprehensive but Scannable
**Rationale**: Plans serve multiple audiences (developers, managers, compliance).
**Implementation**:
- Quick navigation links at top
- Tables for dense information
- Code blocks for technical details
- Checklists for actionable items
#### Decision 2: Living Document
**Rationale**: Plans evolve as projects progress.
**Implementation**:
- Version number and last updated date
- Status indicators (✅ 🟡 ⚪ ❌)
- Trend indicators (⬆️ → ⬇️)
- Clear sections for updates
#### Decision 3: Evidence-Based
**Rationale**: Claims without evidence create distrust.
**Implementation**:
- Token counts explicitly measured
- Performance targets with monitoring tools
- Security controls with NIST mapping
- Test coverage with tool output
#### Decision 4: Action-Oriented
**Rationale**: Plans exist to drive implementation.
**Implementation**:
- Checklists for every phase
- Acceptance criteria for milestones
- Copy-paste commands for verification
- Clear next steps
---
## Integration Points
### How KICKSTART_REPO.md Generates PROJECT_PLAN.md
**Flow**:
User fills KICKSTART_REPO.md ↓ User pastes to LLM (Claude/ChatGPT/Gemini) ↓ LLM analyzes repo + user input ↓ LLM detects tech stack ↓ LLM recommends standards (@load directives) ↓ LLM generates PROJECT_PLAN.md using template structure ↓ User saves PROJECT_PLAN.md to repo ↓ PROJECT_PLAN.md becomes source of truth
**Example LLM Prompt** (embedded in KICKSTART_REPO.md):
```markdown
Generate PROJECT_PLAN.md with these sections:
1. Project Overview (from my project description)
2. Tech Stack Analysis (from detected files)
3. Standards Alignment (using @load syntax)
4. System Architecture (based on detected patterns)
5. Implementation Phases (12-week timeline)
6. Quality Gates (automated checks)
7. Security Implementation (NIST controls)
8. Testing Strategy (80% coverage)
9. Deployment Strategy (blue/green)
10. Monitoring (CloudWatch, Sentry)
11. Team Roles (from stakeholders)
How Templates Integrate with Standards Repository¶
Direct Integration (if standards repo available):
# User runs skill-loader
python3 /path/to/standards/scripts/skill-loader.py recommend ./my-project
# Output:
# Recommended skills:
# - coding-standards (Level 1: 336 tokens)
# - security-practices (Level 1: 409 tokens)
# - testing (Level 1: 430 tokens)
#
# Load command:
# @load [product:api + CS:python + TS:pytest + SEC:*]
Indirect Integration (templates work standalone):
- Templates embed standards URLs
- LLMs fetch standards via web search (if capable)
- Users manually copy relevant sections
- Fallback to embedded best practices
Usage Flow Examples¶
Example 1: New Project from Scratch¶
Scenario: User wants to build a Python API, has no code yet
Steps:
- Create empty Git repository
- Copy KICKSTART_REPO.mdto repo root
- Fill in:
Project Name: Task Manager API
Project Type: API
Primary Language: Python
Tech Stack:
  Backend: FastAPI
  Database: PostgreSQL
- Paste entire file to Claude
- Claude generates:
- Tech Stack Analysis (Python, FastAPI, PostgreSQL)
- Standards: @load [product:api + CS:python + TS:pytest + SEC:*]
- PROJECT_PLAN.md with 12-week timeline
- Sample configs (pyproject.toml, Dockerfile, .github/workflows/ci.yml)
- User saves PROJECT_PLAN.md
- User creates files from generated configs
- User runs git commit(pre-commit gates auto-configure)
Time: 10 minutes from empty repo to first commit
Example 2: Existing Project Needs Documentation¶
Scenario: User has 3-month-old React app, needs to document it
Steps:
- Copy KICKSTART_REPO.mdto existing repo
- Leave all fields blank (triggers auto-detection)
- Paste entire file + instruction "This repo has existing code, please analyze it" to ChatGPT
- ChatGPT scans:
- package.json→ React, TypeScript, Vite
- src/components/→ Component structure
- .github/workflows/→ Existing CI/CD
- ChatGPT generates:
- Tech Stack Analysis (detected state)
- Standards: @load [product:frontend-web + FE:react + TS:vitest]
- PROJECT_PLAN.md documenting current state
- Gap analysis (missing tests, no E2E, no performance monitoring)
- Recommended improvements
- User saves PROJECT_PLAN.md as documentation
- User follows gap analysis to improve project
Time: 5 minutes to get comprehensive analysis
Example 3: Compliance-Heavy Project¶
Scenario: User building HIPAA-compliant healthcare API
Steps:
- Copy KICKSTART_REPO.mdto repo
- Fill in:
- Paste to Claude (with HIPAA context)
- Claude generates:
- Standards: @load [product:api + CS:python + SEC:* + NIST-IG:base + LEG:healthcare]
- PROJECT_PLAN.md with HIPAA section
- NIST 800-53r5 control mapping
- Encryption requirements (at rest, in transit)
- Audit logging specifications
- BAA (Business Associate Agreement) checklist
- User saves PROJECT_PLAN.md
- User implements according to compliance requirements
Time: 15 minutes to get compliance roadmap
Success Criteria¶
Template Effectiveness Metrics¶
KICKSTART_REPO.md Success:
- ✅ User can start using in < 30 seconds
- ✅ Works without filling any fields (auto-detection)
- ✅ Works with any LLM (Claude, ChatGPT, Gemini)
- ✅ Generates complete PROJECT_PLAN.md
- ✅ Produces working starter files
PROJECT_PLAN_TEMPLATE.md Success:
- ✅ Comprehensive (covers all aspects of project)
- ✅ Scannable (quick navigation, tables)
- ✅ Actionable (checklists, commands)
- ✅ Maintainable (version tracking, status indicators)
- ✅ Standards-aligned (explicit @load directives)
User Experience Validation¶
Test 1: New User (No Context)
- Give templates to developer who's never seen standards repo
- Measure: Time to generate PROJECT_PLAN.md
- Target: < 10 minutes
Test 2: LLM Compatibility
- Test KICKSTART_REPO.md with Claude, ChatGPT, Gemini
- Measure: Quality of generated PROJECT_PLAN.md
- Target: All LLMs produce usable output (80%+ complete)
Test 3: Real Project
- Have team use templates for actual project
- Measure: Adoption rate, satisfaction score
- Target: ⅘ satisfaction, continued use after trial
Next Steps¶
Immediate Actions (Design Complete)¶
- Review this architecture document
- Validate structure aligns with requirements
- Confirm examples are realistic
-  Verify integration points 
-  Get feedback on design 
- Share with stakeholders
- Identify gaps or concerns
-  Refine based on input 
-  Proceed to implementation 
- Create templates/KICKSTART_REPO.md
- Create templates/PROJECT_PLAN_TEMPLATE.md
- Test with real scenarios
Implementation Checklist¶
- Architecture review complete
- Design approved by stakeholders
- Implementation plan created
- Templates written
- Templates tested with multiple LLMs
- Documentation updated (README.md)
- Examples created (at least 3 product types)
- User guide written
Appendix: Design Rationale Summary¶
Why These Structures?¶
KICKSTART_REPO.md Design:
- Standalone: Works without external dependencies
- Progressive: Quick Start → Basics → Advanced → Fallback
- LLM-Optimized: Clear instructions, explicit examples, structured output
- Fill-in-the-Blank: Reduces friction, provides guidance
- Auto-Detection: Works even with blank fields
PROJECT_PLAN_TEMPLATE.md Design:
- Comprehensive: Covers all aspects developers need
- Scannable: Tables, quick nav, clear sections
- Living Document: Versioned, status-tracked, maintainable
- Evidence-Based: Measurable metrics, explicit tools
- Action-Oriented: Checklists, commands, acceptance criteria
What Makes This Production-Ready?¶
- Real-World Tested Concepts: Based on existing KICKSTART_PROMPT.md and project_plan_example.md
- Multi-LLM Compatible: No tool-specific syntax (except optional sections)
- Progressive Disclosure: Works for quick starts and comprehensive planning
- Standards-Integrated: Explicit @load directives, token efficiency
- Self-Documenting: Examples, rationales, validation built-in
Document Status: Ready for Implementation Next Action: Proceed to template creation